วันอาทิตย์ที่ 16 กันยายน พ.ศ. 2561

บทที่3 พันธะเคมี

บทที่3  พันธะเคมี
 

ชนิดของพันธะ
พันธะภายในโมเลกุล
(intramolecular bond)
พันธะระหว่างโมเลกุล
(intermolecular bond)
พันธะโคเวเลนต์ (covalent bonds)
พันธะไฮโดรเจน (hydrogen bonds)
พันธะไอออนิก (ionic bonds)
แรงแวนเดอร์วาลส์ 
(Van der Waals forces)
พันธะโลหะ ( metallic bonds)
แรงดึงดูดระหว่างโมเลกุล - ไอออน
(molecule-ion attractions)
 พันธะไอออนิก
          พันธะไอออนิก คือ พันธะที่เกิดขึ้นอันเนื่องมาจากแรงดึงดูดทางไฟฟ้าสถิตระหว่างไอออนบวก(cation) และไอออนลบ(anion) อันเนื่องมาจากการถ่ายโอนอิเล็กตรอน จากโลหะให้แก่อโลหะ  โดยทั่วไปแล้วพันธะไอออนิกเป็นพันธะที่เกิดขึ้นระหว่างโลหะและอโลหะ ทั้งนี้เนื่องจากว่าโลหะมีค่าพลังงานไอออไนเซชัน(ionization energy)ต่ำ แต่อโลหะมีค่าสัมพรรคภาพอิเล็กตรอน(electron affinity)สูง ดังนั้นโลหะจึงมีแนวโน้มที่จะให้อิเล็กตรอน และอโลหะมีแนวโน้มที่จะรับอิเล็กตรอน
เมื่อโลหะเสียอิเล็กตรอนก็จะกลายเป็นไอออนบวก

อโลหะเมื่อรับอิเล็กตรอนก็จะกลายเป็นไอออนลบ


การเกิดพันธะไอออนิก เกิดระหว่างโลหะกับอโลหะ ยกเว้น Be กับ B โดยโลหะจ่ายอิเล็กตรอนออกไปกลายเป็นประจุบวก อโลหะรับอิเล็กตรอนเข้ามากลายเป็นประจุลบ ประจุบวกและประจุลบที่เกิดขึ้นจะส่งแรงดึงดูดกัน เรียกว่า พันธะไอออนิก

โครงสร้างของสารประกอบไอออนิก
1. ผลึกโซเดียมคลอไรด์ พบว่า ในผลึกโซเดียมคลอไรด์  มีโซเดียมไอออนสลับกันกับคลอไรด์ไอออนเป็นแถว ๆ  ทั้งสามมิติ  มีลักษณะคล้ายตาข่าย โดยที่แต่ละไอออน  จะมีไอออนต่างชนิดล้อมรอบอยู่ 6 ไออออน ดังรูป

ดังนั้นอัตราส่วนระหว่างไอออนบวก : ไอออนลบเท่ากับ 6 : 6  หรือ 1 : 1 สูตรอย่างง่ายจึงเป็น NaCl
2. ผลึกซีเซียมคลอไรด์ แต่ละไอออนจะมีไอออนต่างชนิดล้อมรอบอยู่ 8 ไอออน ดังรูป


สูตรและการอ่านชื่อสารประกอบไอออนิก
     เนื่องจากสารประกอบไอออนิกมีลักษณะการสร้างพันธะต่อเนื่องกันเป็นผลึก ไม่ได้อยู่ในลักษณะของโมเลกุลเหมือนในสารประกอบโคเวเลนต์ ดังนั้นสารประกอบไอออนิกจึงไม่มีสูตรโมเลกุลที่แท้จริง แต่จะมีการเขียนสูตรเพื่อแสดงอัตราส่วนอย่างต่ำของจำนวนธาตุต่าง ๆ ที่เป็นองค์ประกอบ เช่น โซเดียมคลอไรด์ เกิดจากอะตอมของธาตุโซเดียม (Na) อย่างน้อยที่สุด 1 อะตอม และอะตอมของธาตุคลอรีน (Cl) อย่างน้อยที่สุด 1 อะตอม จึงสามารถเขียนสูตรได้เป็น NaCl โดยการเขียนสูตรของสารประกอบไอออนิกจะเขียนนำด้วยธาตุที่เกิดเป็นไอออนบวกก่อน จากนั้นจึงเขียนตามด้วยธาตุที่เกิดเป็นไอออนลบตามลำดับ
     วิธีการอ่านชื่อสารประกอบไอออนิกให้อ่านตามลำดับของธาตุที่เขียนในสูตร คือ เริ่มจากธาตุแรกซึ่งเกิดเป็นไอออนบวก (ธาตุโลหะ) แล้วตามด้วยธาตุหลังซึ่งเป็นไอออนลบ (ธาตุอโลหะ) ดังนี้
     1.  เริ่มจากอ่านชื่อไอออนบวก (ธาตุโลหะ) ก่อน
     2.  อ่านชื่อธาตุไอออนลบ (ธาตุอโลหะ) โดยเปลี่ยนเสียงสุดท้ายเป็น -ไอด์ (-ide) ดังตัวอย่างเช่น
           NaCl              อ่านว่า      โซเดียมคลอไรด์
           MgO              อ่านว่า      แมกนีเซียมออกไซด์
           Al2O3            อ่านว่า      อะลูมิเนียมออกไซด์
     3.  หากไอออนลบมีลักษณะเป็นกลุ่มธาตุ จะมีชื่อเรียกเฉพาะที่แตกต่างกัน เช่น No3- เรียกว่า ไนเดรต, CO32- เรียกว่า คาร์บอเนต, SO42- เรียกว่า ซัลเฟต OH- เรียกว่า ไฮดรอกไซด์ เป็นต้น ดังตัวอย่างเช่น
           CaCO3           อ่านว่า       แคลเซียมคาร์บอเนต
           Na2SO4          อ่านว่า      โซเดียมซัลเฟต

     สารประกอบที่เกิดจากธาตุโลหะอื่นๆ ที่นอกเหนือจากโลหะหมู่ I, II, III รวมกับอนุมูลเดี่ยวและอนุมูลกลุ่ม เนื่องจากธาตุ Transition มีเลข Oxidation หลายค่า ค่าที่นำมาคูณไขว้ในสูตร จะเป็นเลขโรมันบอกไว้ในชื่อนั้นๆอยู่
คอปเปอร์ (II) ซัลเฟต ===> CuSO4
นิกเกิล (III) ออกไซด์ ===> Ni2O3
แมงกานีส (IV) ออกไซด์ ===> MnO2 **
ไอร์ออน (II) ไนเตรต===> Fe(NO3)2
**(เพราะ Mn+4 ส่วน O-2 สามารถหักล้างเลข oxidation ได้)

พลังงานกับการเกิดสารประกอบไอออนิก




สมบัติของสารประกอบไอออนิก

สมบัติของสารประกอบไอออนิก
1. มีขั้ว เพราะสารประกอบไอออนิกไม่ได้เกิดขึ้นเป็นโมเลกุลเดี่ยว แต่จะเป็นของแข็งซึ่งประกอบด้วยไอออนจำนวนมาก ซึ่งยึดเหนี่ยวกันด้วยแรงยึดเหนี่ยวทางไฟฟ้า
2. ไม่นำไฟฟ้าเมื่ออยู่ในสภาพของแข็ง แต่จะนำไฟฟ้าได้เมื่อใส่สารประกอบไอออนิกลงในน้ำ ไอออนจะแยกออกจากกัน ทำให้สารละลายนำไฟฟ้าในทำนองเดียวกันสารประกอบที่หลอมเหลวจะนำไฟฟ้าได้ด้วยเนื่องจากเมื่อหลอมเหลวไอออนจะเป็นอิสระจากกัน เกิดการไหลเวียนอิเล็กตรอนทำให้อิเล็กตรอนเคลื่อนที่จึงเกิดการนำไฟฟ้า
3 . มีจุหลอมเหลวและจุดเดือดสูง      ความร้อนในการทำลายแรงดึงดูดระหว่างไอออนให้กลายเป็นของเหลวต้องใช้พลังงานสูง

ตารางแสดงจุดหลอมเหลว  และจุดเดือดของสารประกอบไอออนิกบางชนิด
            สารประกอบไอออนิก                 สูตรโมเลกุล             จุดหลอมเหลว (๐C)             จุดเดือด (๐C)
            โซเดียมไฮดรอกไซด์                    NaOH                            318                                   1390
            โพแทสเซียมไนเดรต                    KNO3                            334                                    400
             แคลเซียมคลอไรด์                        CaCl2                             772                             มากกว่า 1600       
            โซเดียมคลอไรด์                            NaCl                              801                                   1465
             อะลูมิเนียมออกไซด์                      Al2O3                           2054                                  2980
             แมกนีเซียมออกไซด์                      MgO                             2800                                  3600

4 . สารประกอบไอออนิกทำให้เกิดปฏิกิริยาไอออนิก คือ ปฏิกิริยาระหว่างไอออนกับไอออน ทั้งนี้เพราะสารไอออนิกจะเป็นไอออนอิสระในสารละลาย ปฏิกิริยาจึงเกิดทันที
5 . สมบัติไม่แสดงทิศทางของพันธะไอออนิก สารประกอบไอออนิกเกิดจากไอออนที่มีประจุตรงกันข้ามรอบ ๆ ไอออนแต่ละไอออนจะมีสนามไฟฟ้าซึ่งไม่มีทิศทาง จึงทำให้เกิดสมบัติไม่แสดงทิศทางของพันธะไอออนิก
6. เป็นผลึกแข็ง แต่เปราะและแตกง่าย

สมการไอออนิก  (ionic  equation)                                                                                                                           เมื่อผสมสารละลายของสารไอออนิกแล้วมีตะกอนเกิดขึ้น    แสดงว่ามีไอออนรวมตัวกันกลายเป็นสารไอออนิกที่ไม่ละลายน้ำเกิดขึ้น   เขียนสมการแสดงการตกตะกอนได้  3  แบบ คือ
1.  สมการโมเลกุล (molecular equation)  เป็นการเขียน แสดงสารทุกชนิดในรูปโมเลกุล (หน่วยสูตร)  ไม่ต้องแยกออกเป็นไอออน  แต่เป็นที่เข้าใจว่าส่วนใดเป็นไอออนบวก  ส่วนใดเป็นไอออนลบ และส่วนใดคือส่วนที่ตกตะกอน เช่น
                               Pb(NO3)(aq)  +  2KI(aq)  →  PbI2(s)  +  2KNO3(aq)
                สารที่มี (aq)  อยู่ข้าง ๆ  หมายถึงเป็นสารที่แตกตัวเป็นไอออน  ซึ่งก็คือสารที่ละลายน้ำได้
                สารที่มี (s)  อยู่ข้าง ๆ  หมายถึงสารที่ตกตะกอน
 2.   สมการไอออนิกแบบรวม (over all Ionic  equation)  เป็นการเขียนแสดงสารแต่ละชนิดเมื่อแตกตัวเป็นไอออน  โดยเขียนครบทุกไอออน   เช่น
                               Pb2+(aq) + 2NO3-(aq)  +  K+(aq) + 2I- (aq)  → PbI2(s)  + 2NO3-(aq)  +  2K+(aq)
                ให้สังเกตที่  (aq)  และ (s)  แสดงการละลายได้และการตกตะกอน  ตามลำดับ
 3.  สมการไอออนิกสุทธิ (net-ionic equation)  กรณีนี้เขียนเฉพาะไอออนที่รวมตัวกันแล้วตกตะกอนเท่านั้น ได้แก่
                              Pb2+(aq) + 2I- (aq)  → PbI2(s) 
บางกรณีผสมสารละลายแล้วไม่มีตะกอน  แต่พบว่ามีไอออนรวมตัวกัน  ก็ให้เขียนสมการไอออนิกจากการรวมตัวของไอออน   การที่เรามีความรู้เกี่ยวกับการละลายและการตกตะกอน  เมื่อนำสารละลายของสารไอออนิกต่างชนิดมาผสมกันนี้  เราสามารถนำไปใช้ในการเตรียมสารเคมีชนิดใหม่ขึ้นมาได้  โดยการผสมสารเคมีชนิดเดิมที่มีอยู่  เพื่อให้ตกตะกอนเป็นสารเคมีที่ต้องการ  เช่น  ถ้าเราต้องการเตรียม  BaSO4  ซึ่งเป็นสารไอออนิกที่ไม่ละลายน้ำ   เราสามารถเตรียมสารนี้ได้โดยเลือกสารเคมีที่เหมาะสม  2  ชนิด  ที่ละลายน้ำได้  สารหนึ่งให้มี  Ba2+  เป็นส่วนประกอบ  เช่น  BaCl2 อีกสารหนึ่งให้มี  SO42-  เป็นส่วนประกอบ  เช่น  Na2SO4     เมื่อนำมาผสมกันจะตกตะกอนเป็น  BaSO4  ตามต้องการ  ดังรูป

               ตะกอนสีขาวที่เกิดขึ้นคือ  BaSO4  ที่เราต้องการ  สำหรับ  Na+ กับ  Cl-  ยังคงละลายอยู่ในสารละลายตามเดิมเนื่องจากเป็นสารไอออนิกที่ละลายน้ำได้   ถ้าเรากรองแยกเอาตะกอนสีขาวออกมา  เราก็จะได้  BaSO4 สำหรับ  Na+ กับ  Cl-  ก็จะไหลผ่านกระดาษกรองไป

                เขียนแสดงดังสมการต่อไปนี้ 
 สมการโมเลกุล ;   K2SO4(aq)  +  BaCl2(aq)  →  BaSO4(s)  +  2KCl(aq)
สมการไอออนิกรวม ; 
2K+(aq)  +  SO42-(aq)  +  Ba2+(aq)  +  2Cl-(aq)  →  BaSO4(s)  + 2K+(aq)  +  2Cl-(aq)
สมการไอออนิกสุทธิ  ;  Ba2+(aq)  +  SO42-(aq)  →  BaSO4(s)

 พันธะโลหะ
         พันธะโลหะ หมายถึง แรงยึดเหนี่ยวที่ทำให้อะตอมของโลหะ อยู่ด้วยกันในก้อนของโลหะ โดยมีการใช้เวเลนต์อิเล็กตรอนร่วมกันของอะตอมของโลหะ โดยที่เวเลนต์อิเล็กตรอนนี้ไม่ได้เป็นของอะตอมหนึ่งอะตอมใดโดยเฉพาะ เนื่องจากมีการเคลื่อนที่ตลอดเวลา ทุกๆอะตอมของโลหะจะอยู่ติดกันกับอะตอมอื่นๆ ต่อเนื่องกันไม่มีที่สิ้นสุด จึงทำให้โลหะไม่มีสูตรโมเลกุล ที่เขียนกันเป็นสูตรอย่างง่าย หรือสัญลักษณ์ของธาตุนั้นเอง
การที่โลหะมีพันธะโลหะจึงทำให้โลหะมีสมบัติทั่วไป ดังนี้
1. โลหะเป็นตัวนำไฟฟ้าที่ดี เพราะอิเล็กตรอนเคลื่อนที่ได้ง่าย
2. โลหะมีจุดหลอมเหลวสูง เพราะเวเลนต์อิเล็กตรอนของอะตอมทั้งหมดในก้อนโลหะยึดอะตอมไว้อย่างเหนียวแน่น
3. โลหะสามารถตีแผ่เป็นแผ่นบางๆได้ เพราะมีกลุ่มเวเลนต์อิเล็กตรอนทำหน้าที่ยึดอนุภาคให้เรียงกันไม่ขาดออกจากกัน
4. โลหะมีผิวเป็นมันวาว เพราะกลุ่มอิเล็กตรอนที่เคลื่อนที่โดยอิสระมีปฏิกิริยาต่อแสง จึงสะท้อนแสงทำให้มองเห็นเป็นมันวาว
5. สถานะปกติเป็นของแข็ง ยกเว้น Hg เป็นของเหลว
6. โลหะนำความร้อนได้ดี เพราะอิเล็กตรอนอิสระเคลื่อนที่ได้ทุกทิศทาง

พันธะโควาเลนต์
พันธะโควาเลนต์ (Covalent bond) หมายถึง พันธะในสารประกอบที่เกิดขึ้นระหว่างอะตอม 2 อะตอมที่มีค่าอิเล็กโตรเนกาติวิตีใกล้เคียงกันหรือเท่ากัน แต่ละอะตอมต่างมีความสามารถที่จะดึงอิเล็กตรอนไว้กับตัว อิเล็กตรอนคู่ร่วมพันธะจึงไม่ได้อยู่ ณ อะตอมใดอะตอมหนึ่งแล้วเกิดเป็นประจุเหมือนพันธะไอออนิก หากแต่เหมือนการใช้อิเล็กตรอนร่วมกันระหว่างอะตอมคู่ร่วมพันธะนั้นๆและมีจำนวนอิเล็กตรอนอยู่รอบๆ แต่ละอะตอมเป็นไปตามกฎออกเตต ดังภาพ
เป็นพันธะที่เกิดจากการใช้อิเล็กตรอนข้างนอกร่วมกันระหว่างอะตอมของธาตุหนึ่งกับอีกธาตุหนึ่ง
แบ่งเป็น 3 ชนิดด้วยกัน
1. พันธะเดี่ยว (Single covalent bond) เกิดจากการใช้อิเล็กตรอนร่วมกัน 1 อิเล็กตรอน เช่น F2 Cl2 CH4 เป็นต้น
 2. พันธะคู่ ( Doublecovalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกันของธาตุทั้งสองเป็นคู่ หรือ 2 อิเล็กตรอน เช่น O2 CO2 C2H4 เป็นต้น

 3. พันธะสาม ( Triple covalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกัน 3 อิเล็กตรอน ของธาตุทั้งสอง เช่น N2 C2H2 เป็นต้น
         
การอ่านชื่อสารประกอบโควาเลนซ์
สารประกอบของธาตุคู่ ให้อ่านชื่อธาตุที่อยู่ข้างหน้าก่อน แล้วตามด้วยชื่อธาตุที่อยู่หลัง โดยเปลี่ยนเสียงพยางค์ท้ายเป็น “ ไอด์” (ide)
ให้ระบุจำนวนอะตอมของแต่ละธาตุด้วยเลขจำนวนในภาษากรีก ดังตาราง
ถ้าสารประกอบนั้นอะตอมของธาตุแรกมีเพียงอะตอมเดียว ไม่ต้องระบุจำนวนอะตอมของธาตุนั้น แต่ถ้าเป็นอะตอมของธาตุหลังให้อ่าน “ มอนอ” เสมอ

ประเภทของพันธะโคเวเลนต์
 พันธะโคเวเลนต์แบ่งเป็น 2 ประเภท คือ
1. พันธะโคเวเลนต์แบบไม่มีขั้ว  คือพันธะที่เกิดจากอะตอมทั้ง 2 มีการใช้อิเล็กตรอนเท่าๆกัน (มีค่าอิเล็กโทรเนกาติวิตีหรือความสามารถในการดึงดูดอิเล็กตรอนเท่ากัน) และเมื่ออะตอมทั้งสองสร้างพันธะต่อกันแล้วอิเล็กตรอนจะเคลื่อนที่รอบๆและใช้เวลากับอะตอมทั้งสองเท่าๆกัน                                   

.
 2. พันธะโคเวเลนต์แบบมีขั้ว  อะตอมทั้งสองมีการใช้อิเล็กตรอนร่วมกันแต่ไม่เท่ากัน นั่นคืออะตอมที่มีค่าอิเล็กโทรเนกาติวิตีสูงจะดึงอิเล็กตรอนเข้าหาตัวเองได้มากกว่า
หรืออาจกล่าวได้ว่าเมื่ออะตอมทั้งสองสร้างพันธะต่อกันแล้วอิเล็กตรอนจะเคลื่อนที่รอบๆอะตอมทั้งสองแต่ว่าจะใช้เวลาสำหรับอะตอมทั้งสองไม่เท่ากัน คือจะเกิดประจุลบขึ้นเล็กน้อย (partial negative charge) กับอะตอมที่มีค่าอิเล็กโทรเนกาติวิตีสูง และประจุบวกขึ้นเล็กน้อย (partial positive charge) กับอะตอมที่มีค่าอิเล็กโทรเนกาติวิตีต่ำกว่า
สภาพขั้วของโมเลกุลโคเวเลนต์
      - โมเลกุลโคเวเลนต์ที่มีพันธะโคเวเลนต์แบบมีขั้ว อาจเป็นโมเลกุลมีขั้วหรือไม่มีขั้วก็ได้
      - โมเลกุลโคเวเลนต์มีพันธะโคเวเลนต์แบบไม่มีขั้ว โมเลกุลก็ต้องไม่มีขั้วด้วย
      - สภาพขั้วของของโมเลกุลขึ้นอยู่กับผลรวมเวกเตอร์ทางคณิตศาสตร์ของทุกพันธะในโมเลกุล
ถ้าผลรวมเวกเตอร์หักล้างกันหมด (ผลรวมเวกเตอร์เท่ากับศูนย์) แสดงว่าเป็นโมเลกุลไม่มีขั้ว เช่น CO2
รูปร่างโมเลกุลโคเวเลนต์
รูปร่างโมเลกุลโคเวเลนต์ขึ้นอยู่กับ ทิศทางของพันธะโคเวเลนต์ , ความยาวพันธะ , และมุมระหว่างพันธะโคเวเลนต์รอบอะตอมกลาง
ทิศทางของพันธะขึ้นอยู่กับ
- แรงผลักระหว่างพันธะรอบอะตอมกลาง เพื่อให้ห่างกันมากที่สุด
-แรงผลักของอิเล็กตรอนคู่อิสระของอะตอมกลางที่มีต่อพันธะรอบอะตอมกลางแรงนี้มีค่ามากกว่าแรงที่พันธะผลักกันเอง

บทที่2 อะตอมและสมบัติของธาตุ

บทที่2  อะตอมและสมบัติของธาตุ
       
อะตอม คือ หน่วยที่เล็กที่สุดของสสารที่ยังคงสภาพความเป็นสสารอยู่ได้

แบบจำลองอะตอม  ตามทฤษฎี 5 แบบ คือ

2.1.1. แบบจำลองอะตอมของจอห์นดอลตัน
สสารทุกชนิดประกอบด้วยอนุภาคที่เล็กที่สุดเรียกว่า อะตอม ซึ่งไม่สามารถแบ่งแยกต่อไปได้อีก 
                               


2.1.2. แบบจำลองอะตอมของทอมสัน

-ค้นพบอิเล็กตรอน ที่ มีประจุไฟฟ้าลบ  มีมวลประมาณ1/2000 ของมวลของ 
-โดยศึกษาพฤติกรรมของ หลอดรังสีแคโทด ในสนามแม่เหล็กไฟฟ้า 
                      


2.1.3. แบบจำลองของรัทเทอร์ฟอร์ด            
                           


     การกระเจิง (scattering) ของอนุภาค a โดยแผ่นทองคำบางๆ   รัทเทอร์ฟอร์ดพบว่ารังสีส่วนใหญ่ไม่เบี่ยงเบน และส่วนน้อยที่เบี่ยงเบนนั้น ทำมุมเบี่ยงเบนใหญ่มาก บางส่วนยังเบี่ยงเบนกลับทิศทางเดิมด้วย จำนวนรังสีที่เบี่ยงเบนจะมากขึ้นถ้าความหนาแน่นของแผ่นโลหะเพิ่มขึ้น


สเปกตรัม
สเปกตรัมเป็นแสงที่ถูกแยกกระจายออกเป็นแถบสีต่าง ๆ และแสงเป็นรูปหนึ่งของคลื่นแม่เหล็กไฟฟ้า
แถบสีต่างๆในแถบสเปคตรัมของแสง
                                  

สเปกตรัมของธาตุ
              แมกซ์ พลังค์ได้เสนอทฤษฎีควอนตัม (quantum theory) และอธิบายเกี่ยวกับการเปล่งรังสีว่า รังสีแม่เหล็กไฟฟ้าที่เปล่งออกมามีลักษณะเป็นกลุ่มๆ ซึ่งประกอบด้วยหน่วยเล็กๆ เรียกว่า    ควอนตัม (quantum) ขนาดของควอนตัมขึ้นกับความถี่ของรังสี และแต่ละควอนตัมมีพลังงาน (E) โดยที่ E เป็นปฏิภาคโดยตรงกับความถี่ (u)ดังนี้

             E=hν
    E = พลังงาน 1 ควอนตัมแสง  (J)
    h = ค่าคงที่ของพลังค์  (6.62x10-34 Js)
    ν= ค่าความถี่ ( s-1)

 5.แบบจำลองอะตอมแบบกลุ่มหมอก 
                         
1. อิเล็กตรอนไม่ได้เคลื่อนที่เป็นวงกลม แต่เคลื่อนที่ไปรอบๆนิวเคลียส
         เป็นรูปทรงต่างๆตามระดับพลังงาน
     2. ไม่สามารถบอกตำแหน่งที่แน่นอนของอิเล็กตรอนได้ เนื่องจากอิเล็กตรอนมีขนาดเล็กมาก
         และเคลื่อนที่รวดเร็วตลอดเวลาไปทั่วทั้งอะตอม
     3. อะตอมประกอบด้วยกลุ่มหมอกของอิเล็กตรอนรอบนิวเคลียส บริเวณที่มีหมอกทึบ
         แสดงว่ามีโอกาสพบอิเล็กตรอนได้มากกว่าบริเวณที่มีหมอกจาง ดังรูปที่แสดงไว้
2.2 อนุภาคในอะตอมและไอโซโทป
2.2.1  อนุภาคในอะตอม
                
ในปีพ.ศ 2451 โรเบิร์ตแอนดรูส์มิลลิแกน นักวิทยาศาสตร์ชาวอเมริกันได้ทำการหาค่าประจุของอิเล็กตรอนโดยการอาศัยสังเกตหยดน้ำมันในสนามไฟฟ้าดังรูป


                                      
2.2.2 เลขอะตอม  เลขมวล  และไอโซโทป

จากการศึกษาเกี่ยวกับโครงสร้างของอะตอม โดยมีข้อมูลต่างๆ จากการทดลองมาสนับสนุน สรุปได้ว่า อะตอมของธาตุต่างๆ จะประกอบด้วยอิเล็กตรอน โปรตอนและนิวตรอน (ยกเว้นอะตอมของธาตุไฮโดรเจน ที่ไม่มีนิวตรอน) ซึ่งมีจำนวนแตกต่างกันไป เลขที่แสดงจ้านวนโปรตอนในนิวเคลียสของอะตอม เรียกว่าเลขอะตอม (atomic number, Z) เลขอะตอมจะเป็นค่าเฉพาะของธาตุ ธาตุชนิดเดียวกันจะมีเลขอะตอมเท่ากันเสมอ ซึ่งที่สภาวะปกติจะมีจำนวนโปรตอนและอิเล็กตรอนเท่ากัน ส่วนเลขที่แสดงจำนวนผลบวกของโปรตอนและจำนวนนิวตรอน เราเรียกว่า เลขมวล (mass number, A) ซึ่งในนิวเคลียสของอะตอม เลขมวลจะมีค่าใกล้เคียงกับเลขของอะตอม โดยผลต่างของเลขมวลกับเลขของอะตอมจะเท่ากับจำนวนนิวตรอนโดยสามารถเขียนสัญลักษณ์นิวเคลียร์ได้ คือ 


2.3การจัดเรียงอิเล็กตรอนในอะตอม

2.3.1 จำนวนอิเล็กตรอนในแต่ละระดับพลังงาน
จากการศึกษาแบบจำลองอะตอมทำให้ทราบว่าอะตอมประกอบด้วยโปรตอนและนิวตรอนอยู่รวมกันในนิวเคลียสโดยอิเล็กตรอนเคลื่อนที่อยู่รอบรอบและอยู่ในระดับพลังงานต่างกันเล็กตอนเหล่านั้นอยู่กันอย่างไรและในแต่ละระดับพลังงานจะมีอิเล็กตรอนสูงสุดเท่าไหร่ให้พิจารณาข้อมูลแสดงการจัดเรียงอิเล็กตรอนของธาตุบางธาตุ
2.3.2 ระดับพลังงานหลัก  และระดับพลังงานย่อย
จากการศึกษาสเปกตรัมของธาตุต่างๆ พบว่าในระดับพลังงานหลัก (n) ยังประกอบด้วยระดับพลังงานย่อยหรือเรียกว่า ซับเซลล์ (sub-levels หรือ sub-shells) โดยก้าหนดเป็นสัญลักษณ์คือ s p d และ f ซึ่งในแต่ละระดับพลังงานย่อยจะมีอิเล็กตรอนได้ไม่เท่ากันและมีพลังงานไม่เท่ากัน กล่าวคือ ระดับพลังงานย่อย s มีพลังงานต่ำกว่า p ต่ำกว่า d ต่ำกว่า f ตามล้าดับ ในระดับพลังงานย่อยยังประกอบด้วยออร์บิทัล (orbital) ซึ่งในแต่ละออร์บิทัลมีอิเล็กตรอนได้ไม่เกิน 2 อิเล็กตรอน ดังนี้
ระดับพลังงานย่อย s มีอิเล็กตรอนได้ไม่เกิน 2 อิเล็กตรอน มี 1 ออร์บิทัล
ระดับพลังงานย่อย p มีอิเล็กตรอนได้ไม่เกิน 6 อิเล็กตรอน มี 3 ออร์บิทัล
ระดับพลังงานย่อย
d มีอิเล็กตรอนได้ไม่เกิน 10 อิเล็กตรอน มี 5 ออร์บิทัล
ระดับพลังงานย่อย
f มีอิเล็กตรอนได้ไม่เกิน 14 อิเล็กตรอน มี 7 ออร์บิทัล
ภายในระดับพลังงานหลักอันเดียวกันจะประกอบด้วยพลังงานย่อยเรียงล้าดับจากพลังงานต่ำไปสูง คือ จาก s ไป p d และ f เช่น 3p สูงกว่า 3s ซึ่งเมื่อนำมาเรียงลำดับกันแล้ว พบว่ามีเฉพาะ 2 ระดับพลังงานแรกคือ n = 1 และ n = 2 เท่านั้น ที่มีพลังงานเรียงลำดับกัน แต่พอขึ้นระดับพลังงาน n = 3 เริ่มมีการซ้อนเกยกันของระดับพลังงานย่อย ดังรูป
2.3.3 ออร์บิทัล
จากการศึกษาพบว่ากรณีของอะตอมที่มีหลายอิเล็กตรอนนั้นระดับพลังงานของ 3d จะใกล้กับ 4s มาก และพบว่า ถ้าบรรจุอิเล็กตรอนใน 4s ก่อน 3d พลังงานรวมของอะตอมจะต่ำ และอะตอมจะเสถียรกว่า ดังนั้นในการจัดเรียงอิเล็กตรอนในออร์บิทัลแบบที่เสถียรที่สุด คือการจัดตามระดับพลังงานที่ต่ำที่สุดก่อนทั้งในระดับพลังงานหลักและย่อย ซึ่งวิธีการจัดอิเล็กตรอนสามารถพิจารณาตามลูกศรในรูปที่ 1.8 โดยเรียงลำดับได้เป็น 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p
2.3.4  หลัการจัดเรียงอิเล็กตรอนในอะตอม
ในการบรรจุอิเล็กตรอนหรือการจัดเรียงอิเล็กตรอนลงในออร์บิทัลจะต้องยึดหลักในการบรรจุอิเล็กตรอนของอะตอมหนึ่งๆ ลงในออร์บิทัลที่เหมาะสมตามหลักดังต่อไปนี้
1) หลักของเพาลี (Pauli exclusion principle) กล่าวว่า “ไม่มีอิเล็กตรอนคู่หนึ่งคู่ใดในอะตอมที่มีเลขควอนตัมทั้งสี่เหมือนกันทุกประการ” นั่นคืออิเล็กตรอนคู่หนึ่งในออร์บิทัลจะมีค่า n, ℓ, mℓ เหมือนกันได้ แต่ต่างกันที่สปิน
2) หลักของเอาฟ์บาว (Aufbau principle) มีวิธีการดังนี้
2.1) สัญลักษณ์วงกลม O,  หรือ _ แทน ออร์บิทัล
ลูกศร ↑↓ แทน อิเล็กตรอน 1 ตัว ที่สปิน ขึ้น-ลง
↑↓ เรียกว่า อิเล็กตรอนคู่ (paired electron)
 เรียกว่าอิเล็กตรอนเดี่ยว (single electron)
2.2) บรรจุอิเล็กตรอนเข้าไปในออร์บิทัลที่มีระดับพลังงานต่ำจนครบจำนวนก่อน ดังรูปที่ 1.1
3) กฎของฮุนด์ (Hund’s rule) กล่าวว่า “การบรรจุอิเล็กตรอนในออร์บิทัลที่มีระดับพลังงานเท่ากัน (degenerate orbital) จะบรรจุในลักษณะที่ท้าให้มีอิเล็กตรอนเดี่ยวมากที่สุดเท่าที่จะมากได้” ออร์บิทัลที่มีระดับพลังงานมากกว่า 1 เช่น ออรฺบิทัล p และ d เป็นต้น
4) การบรรจุเต็ม (filled configuration) เป็นการบรรจุอิเล็กตรอนในออร์บิทัลที่มีระดับพลังงานเท่ากัน แบบเต็ม ครบ 2 ตัว ส่วนการบรรจุครึ่ง (half- filled configuration) เป็นการบรรจุอิเล็กตรอนลงในออร์บิทัลแบบครึ่งหรือเพียง 1 ตัว เท่านั้น ซึ่งการบรรจุทั้งสองแบบ (ของเวเลนซ์อิเล็กตรอน) จะทำให้มีความเสถียรมากกว่าตัวอย่างการบรรจุเต็ม เช่น

ขนาดอะตอม
ตามแบบจำลองอะตอมแบบกลุ่มหมอกอิเล็กตรอนที่อยู่รอบนิวเคลียสจะเคลื่อนที่ตลอดเวลาด้วยความเร็วสูงและไม่สามารถบอกตำแหน่งที่แน่นอนรวมทั้งไม่สามารถกำหนดขอบเขตที่แน่นอนของอิเล็กตรอนได้นอกจากนี้อะตอมโดยทั่วไปไม่อยู่เป็นอะตอมเดียวแต่จะมีแรงยึดเหนี่ยวระหว่างอะตอมไว้ด้วยกันถึงเป็นเรื่องยากที่จะวัดขนาดอะตอมที่อยู่ในสภาวะอิสระหรือเป็นอะตอมเดี่ยวในทางปฏิบัติจึงบอกขนาดอะตอมด้วยรัศมีอะตอมซึ่งกำหนดให้มีค่าเท่ากับครึ่งหนึ่งของระยะทางระหว่างนิวเคลียสของอะตอมทั้ง 2 ที่มีแรงยึดเหนี่ยวระหว่างอะตอมไว้ด้วยกันหรือที่อยู่ชิดกัน เพื่อศึกษา รัศมีอะตอมของธาตุทำให้ทราบขนาดอะตอมของธาตุและสามารถเปรียบเทียบขนาดอะตอมของธาตุที่อยู่ในคาบเดียวกันหรือหมู่เดียวกันได้ดังรูป

พลังงานไอออไนเซชัน (Ionization Energy, IE) พลังงานอย่างน้อยที่สุด
  พลังงานที่ใช้ในการทำให้อิเล้กตรอนหลุดออกมาจากอะตอมของธาตุและกลายเป็นไอออนบวกในสถานะแก๊ส   หน่วย MJ/mol   
   ตัวอย่างสมการนิวเคลียร์  x(g) ----> x^+(g) + e^-
อิเล็กโทรเนกาติวิตี ( Electronegativity, EN)
   ความสามารถของอะตอมในการดึงดูดอิเล็กตรอน  ในโมเลกุลของสาร 1-7
สัมพรรคภาพอิเล็กตรอน (Electron affininty : EA)
   พลังงานที่ถูกคายออกมาเมื่ออะตอมในสถานะแก๊สได้รับ 1 อิเล็กตรอน

สมบัติของสารประกอบของธาตุตามคาบ

สมบัติของสารประกอบคลอไรด์ของธาตุในคาบ 2 และ 3 
              สารประกอบดลอไรด์
คุณสมบัติ
สารประกอบคลอไรด์ของโลหะ
สารประกอบคลอไรด์ของอโลหะ
จุดเดือด
สูง
ต่ำ
จุดหลอมเหลว
สูง
ต่ำ
ความเป็นกรด-เบสของสารละลาย
กลาง
ยกเว้น
BeClและ NaClซึ่งป็นกรด
กรด
สารที่ไม่ละลายน้ำ
 CCl4  NCl5
-

สมบัติของสารประกอบออกไซด์ของธาตุในคาบ 2 และ 3
               สารประกอบออกไซด์
คุณสมบัติ
สารประกอบออกไซด์ของโลหะ
สารประกอบออกไซด์ของอโลหะ
จุดเดือด
สูง
ต่ำ
จุดหลอมเหลว
สูง
ต่ำ
ความเป็นกรด-เบสของสารละลาย
เบส
กรด
สารที่ไม่ละลายน้ำ
 BeO  Al3O3
SiO2

สมบัติของธาตุแต่ละหมู่

ธาตุหมู่ โลหะอัลคาไลน์ 1. มีเวเลนส์อิเล็กตรอนเท่ากับ 1 2. มีเลขออกซิเดชัน +1


3. ทำปฏิกิริยาได้ดีมาก จึงไม่พบโลหะหมู่ ในธรรมชาติ แต่จะพบในสารประกอบ สารประกอบทุกตัวเป็นพันธะไอออนิก 4. สารประกอบของโลหะหมู่ ละลายน้ำได้ทุกตัว5. ทำปฏิกิริยารุนแรงกับน้ำ  ได้ด้างและแก๊ส H2
6. ความหนาแน่นต่ำ ลอยน้ำได้ จุดเดือด จุดหลอมเหลว ไม่สูงนัก  ธาตุหมู่ II โลหะอัลคาไลน์เอิร์ท
1. มีเวเลนส์อิเล็กตรอนเท่ากับ 2 2. มีเลขออกซิเดชัน +2
3.ทำปฏิกิริยาได้ดี พบโลหะหมู่ II ในธรรมชาติและพบในรูปสารประกอบ สารประกอบส่วนใหญ่เป็นพันธะไอออนิก ยกเว้น Be
4. สารประกอบของโลหะหมู่ II ส่วนใหญ่ ละลายน้ำได้ดี แต่จะไม่ละลายน้ำถ้าเป็นสารประกอบของ CO32-    SO42-    PO43- ยกเว้น MgSO4
5. ทำปฏิกิริยากับน้ำ  ได้ด่างและแก๊ส H2

ธาตุหมู่ VI ชาลโคเจน 1. มีเวเลนส์อิเล็กตรอนเท่ากับ 6
2. มีเลขออกซิเดชันได้หลายค่า ตั้งแต่ -2 ถึง+6
3. จุดเดือด จุดหลอมเหลวสูงมากเมื่อเทียบกับหมู่VII  ส่วนใหญ่เป็นสารประกอบประเภทโครงร่างตาข่าย

ธาตุหมู่ 
VII เฮโลเจน 1. มีเวเลนส์อิเล็กตรอนเท่ากับ 7
2. มีเลขออกซิเดชันได้หลายค่า ตั้งแต่ -1 ถึง +7
3. เป็นธาตุหมู่เดียวที่โมเลกุล มี 2 อะตอมเรียกว่า Diatomic Molecule
4. พบเป็นธาตุอิสระในธรรมชาติ และพบในรูปของสารประกอบไอออนิกและโคเวเลนต์5. สารประกอบของหมู่ VII ส่วนใหญ่ละลายน้ำได้ดี ยกเว้นเป็นสารประกอบของ  Ag  Hg     Pb
ธาตุหมู่ VIII แก๊สเฉื่อย แก๊สมีตระกูล , Inert gas , Noble gas1. มีเวเลนส์อิเล็กตรอนเท่ากับ 8 ยกเว้น He มีเท่ากับ 2
2. เฉื่อยชาต่อการเกิดปฏิกิริยามาก แต่สามารถสังเคราะห์ได้ 
3. มีค่า IE (Ionization Energy) สูงสุดในตาราง   และ He มีค่า IE สูงที่สุดในตารางธาตุ 4. เป็นธาตุเดียวที่ไม่มีค่า EN 


ตำแหน่งของธาตุไฮโดรเจนในตารางธาตุ

การจัดธาตุให้อยู่ในหมู่ของตารางธาตุจะใช้สมบัติที่คล้ายกันเป็นเกณฑ์
สมบัติ
ธาตุหมู่ IA
ธาตุไฮโรเจน
ธาตุหมู่ VIIA
จำนวนวาเลนซ์อิเล็กตรอน
1

1
7
เลขออกซิเดชันในสารประกอบ
+1
+1และ-1
+1  +3 +5 +7 -1
ค่า IE
382-526
1318
1015-1687
อิเล็กโทรเนกาติวิตี
1.0-0.7
2.1
4.0-2.2
สถานะ
ของแข็ง
แก๊ส
แก๊ส/ของเหลว/ของแข็ง
การนำไฟฟ้า
นำ
ไม่นำ
ไม่นำ

สรุป ธาตุไฮโดรเจนมีสมบัติคล้ายหมู่ VIIA หลายหระการ แต่ไม่สามารถนำธาตุไฮโดรเจนมาจัดในหมู่ VIIA ได้ เพราะ จะทำให้แนวโน้มของสมบัติบางประการของธาตุหมู่VIIA เสียไป ปัจจุบันจึงจัดธาตุไฮโดรเจน อยู่ในคาบที่ 1 อยู่ระหว่างหมู่ IA กับ VIIA  



2.5  ธาตุทรานซิชัน 
                ธาตุทรานซิชัน ประกอบด้วยธาตุ หมู่ 
IB ถึงหมู่ VIIIB รวมทั้งกลุ่มแลนทาไนด์กับกลุ่มแอกทิไนด์ 
1. อยู่ระหว่างหมู่IIA กับหมู่ IIIA เริ่มตั้งแต่คาบ 4 เริ่มที่เลขอะตอม 21 
2.การจัดเรียงอิเล็กตรอนจะต่างจากธาตุโดยทั่วไป คือ จะจัดเรียงอิเล็กตรอนวงนอกสุดก่อน แล้วจัดอิเล็กตรอนวงรองจากวงนอกสุดเป็นวงสุดท้าย3.การดึงอิเล็กตรอนให้หลุดจากอะตอม จะดึงอิเล็กตรอนวงนอกสุดก่อน เช่นเดียวกับธาตุปกติ4.ธาตุทรานซิชัน จะมีเวเลนต์อิเล็กตรอน เป็น 2,1 เท่านั้น  ยกเว้น Cr กับ Cu มีเวเลนซ์อิเล็กตรอนเท่ากับ 1
5.ธาตุทรานซิชัน จะมีสมบัติเหมือนกันเป็นคาบมากกว่าเป็นหมู่
6.ความหนาแน่นของธาตุทรานซิชันจะสูงมาก และในคาบเดียวกันจะมีความหนาแน่นที่ใกล้เคียงกัน
7.จุดเดือดและจุดหลอมเหลวของธาตุทรานซิชันจะสูงมาก และสูงมากกว่าหมู่IAและหมู่IIA
8.ค่า IE , EN , E0 ของธาตุทรานซิชันจะสูงมากกว่าโลหะโดยทั่วไป9.ขนาดอะตอมของธาตุทรานซิชันที่เรียงตามคาบจากซ้ายไปขวาจะมีขนาดเล็กลง แต่ใกล้เคียงกันมาก เพราะโลหะทรานซิชัน มีความหนาแน่นสูง 10.ธาตุทรานซิชัน มีเลขออกซิเดชันหลายค่า  ยกเว้น Sc กับ Zn มีเลขออกซิเดชันเพียงค่าเดียว
 

สารประกอบของธาตุทรานซิชัน 

1.การเกิดสี
              
1.สีของธาตุทรานซิชันจะเปลี่ยนเมื่อเลขออกซิเดชันเปลี่ยน เช่น Si
สูตร
ชื่อ
สี
Cr2+
โครเมียม(II)ไอออน
น้ำเงิน
Cr3+
โครเมียม(III)ไอออน
เขียว
CrO42-
โครเมตไอออน
เหลือง
Cr2O72-
ไดโครเมตไอออน
ส้ม
Mn2+
แมงกานีส(II)ไอออน
ชมพูอ่อนไม่มีสี
Mn(OH)3*
แมงกานีส(III)ไฮดรอกไซด์
น้ำตาล
MnO2*
แมงกานีส(IV)ออกไซด์
ดำ
MnO42-
แมงกาเนตไอออน
เขียว
MnO4-
เปอร์แมงกาเนตไอออน
ม่วงแดง


                 
2.สีจะเปลี่ยนถ้าสารหรือไอออนต่างชนิดกันมาล้อมรอบ เช่นCuSO4.5H2สีฟ้า  และ Cu(NH3)4SOสีคราม
               
3.สีเปลี่ยนเพราะจำนวนสารที่มาเกาะไม่เท่ากัน เช่น CrO42-สีเหลือง และ Cr2O72-
2.สารประกอบเชิงซ้อนของธาตุทรานซิชัน
               สารประกอบของธาตุทรานซิชันชนิดต่างๆ เช่น 
KMnO4 ประกอบด้วย K+ และ MnO-4     ซึ่ง MnO-4 จัดเป็นไอออนเชิงซ้อน ที่มีธาตุทรานซิชันเป็นอะตอมกลางและยึดเหนี่ยวกับอะตอมหรือไอออนอื่นๆที่มาล้อมรอบด้วยพันธะโคเวเลนต์
               สารประกอบที่ประกอบด้วยไอออนเชิงซ้อนจัดเป็นสารประกอบเชิงซ้อน  ธาตุทรานซิชันส่วนใหญ่จะเกิดเป็นสารประกอบเชิงซ้อนที่มีสีต่างกัน
               ปัจจัยที่มีผลต่อสีของสารประกอบเชิงซ้อนของธาตุทรายซิชัน
                
เลขออกซิเดชันของธาตุทรานซิชัน               - ชนิดของธาตุทรานซิชัน
               
จำนวนโมเลกุลหรือไอออนที่ล้อมรอบธาตุทรานซิชัน

ธาตุกึ่งโลห 

               มีคุณสมบัติดังนี้
               
1.มีค่า IE และ EN  ค่อนข้างสูง
               
2.จุดเดือด จุดหลอมเหลว สูง
               
3.มีความหนาแน่นสูง
               
4.สามารถนำไฟฟ้าได้
               
5.สามารถเกิดสารประกอบได้ ทั้งสารประกอบไอออนนิกและสารประกอบโคเวเลนต์

ธาตุกำมันตรังสี

ธาตุกัมมันตรังสี คือ ธาตุที่มีสมบัติในการแผ่รังสี
กัมมันตภาพรังสี คือ ปรากฏการณ์ที่ธาตุแผ่รังสีได้อย่างต่อเนื่อง
    การแผ่รังสี เป็นการเปลี่ยนแปลงภายในนิวเคลียสของไอโทปที่ ไม่เสถียร(ไอโซโทปของนิวเคลียสที่มีอัตราส่วนระหว่างจำนวนนิวตรอนต่อจำนวนโปรตอนไม่เหมาะสม)   เนื่องจากนิวเคลียสของธาตุกัมมันตรังสีมีพลังงานสูงมากและไม่เสถียร จึงปล่อยพลังงานออกมาในรูปของอนุภาคหรือรังสีบางชนิด แล้วธาตุเหล่านั้นก็จะเปลี่ยนเป็นธาตุใหม่


ชนิดและสมบัติของรังสีบางชนิด

รังสีแอลฟาหรือ อนุภาคแอลฟา 

  อนุภาคประกอบด้วย 2 โปรตอน 2 นิวตรอน เหมือนนิวเคลียสของอะตอมฮีเลียม มีเลขมวล 4
  
มีประจุไฟฟ้า +2
  
มีอำนาจทะลุทะลวงต่ำมาก ไม่สามารถผ่านแผ่นกระดาษหรือโลหะบางๆได้
  
เบี่ยงเบนในสนามแม่เหล็ก โดยเบนเข้าหาขั่วลบ
รังสีบีตา หรือ อนุภาคบีตา
  
มีสมบัติเหมือนอิเล็กตรอน
  
มีประจุไฟฟ้า -1 มีมวลเท่ากับมวลอิเล็กตรอน
  
มีอำนาจทะลุทะลางมากกว่า รังสีแอลฟา ถึง 100 เท่า  สามารถผ่านโลหะแผ่นบางๆ
  
มีความเร็วใกล้เคียงความเร็วแสง
  
เบี่ยงเบนในสนามแม่เหล็ก โดยเบนเข้าหาขั่วบวก
รังสีแกมมา
  
เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมาก
  
ไม่มีประจุไม่มีมวล
  
มีอำนาจทะลุทะลวงสูงมาก สามารถผ่านแผ่นคอนกรีตหนาๆได้


ครึ่งชีวิตของธาตุกัมมันตรังสี
               ธาตุกัมมันตรังสีแต่ละชนิดจะสลายตัวได้เร็วหรือช้าแตกต่างกัน ปริมาณการสลายตัวของธาตุกัมมันตรังสีจะบอกเป็น ครึ่งชีวิต(ระยะเวลาที่นิวเคลียสของธาตุกัมมันตรังสี สลายตัวจนเหลือครึ่งหนึ่งของปริมาณเดิม)   ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทป

ประโยชน์ของธาตุกัมมันตรังสี
ด้านธรณีวิทยา
               
C-14                      หาอายุของวัตตุโบราณที่มีคาร์บอนเป็นองค์ประกอบ
ด้านการแพทย์
               
I-131     ตรวจดูความปกติของต่อมไธรอยด์
               
I-132     ตรวจดูภาพสมอง
                
Na-24    ตรวจดูระบบการไหลเวียนของเลือด
                
Co-60,Ra-226   รักษาโรคมะเร็ง
                
P-32       รักษาโรคมะเร็งเม็ดเลือดขาว
ด้านการเกษตร
                
P-32                       ตรวจวัดรังสีที่ใบของพืช
                ปรับปรุงเมล็ดพันธุ์พืช
                
Co-60    ทำลายแบคทีเรีย,ถนอมอาการ
ด้านการอุสาหกรรม
                รังสีทำให้อัญมณีมีสีสันสวยงามขึ้น
                ตรวจหารอยรั่วของท่อส่งน้ำมัน
ด้านพลังงาน
                U-235,U-238,Pu-239   ผลิตไฟฟ้าในโรงไฟฟ้าปรมาณู


  โทษของธาตุกัมมันตรังสี
               เมื่อร่างกายได้รับรังสีจำนวนมาก
ทำให้โมเลกุลของน้ำ สารอินทรีย์และสารอนินทรีย์ต่างๆ ในร่างกายเสียสมดุล  ทำให้เกิดความเสียหายต่อเซลล์ในร่างกาย ไม่สามารถทำงานได้ตามปกติ  อาจทำให้เซลล์เกิดการเปลี่ยนแปลงหรือกลายพันธุ์  และรังสีแอลฟาจะทำลายเซลล์เม็ดเลือดแดง

ปฏิกิริยานิวเคลียร์
                เป็นการเปลี่ยนแปลง ในนิวเคลียสของธาตุ และมีพลังงานเกี่ยวข้องกับปฏิกิริยาจำนวนมหาศาล
ปฏิกิริยาฟิชชัน
               คือ กระบวนการที่นิวเคลียสของธาตุหนักบางชนิดแตกออกเป็นไอโซโทปของธาตุที่เบากว่า ในการเกิดปฏิกิริยาในแต่ละครั้งจะคายพลังงานออกมาจำนวนมาก และได้ไอโซโทปกัมมันตรังสีหลายชนิด รวมถึงได้นิวตรอน ถ้านิวตรอนที่เกิดขึ้นใหม่นี้ชนกับนิวเคลียสอื่นๆ ก็จะทำให้เกิดปฏิกิริยาฟิชชันต่อไปเรื่อยๆเรียกปฏิกิริยานี้ว่า ปฏิกิริยาลูกโซ่

ปฏิกิริยาฟิวชัน
                คือ กรณีที่นิวเคลียสของธาตุเบาสองชนิดหลอมรวมกันเกิดเป็นนิวเคลียสใหม่ที่มีมวลสูงกว่าเดิม และให้พลังงานปริมาณมาก  การเกิดปฏิกิริยาฟิวชันจะต้องใช้พลังงานเริ่มต้นสูงมาก เพื่อเอาชนะแรงผลักระหว่างนิวเคลียสที่จะเข้ารวมกัน